
DSSWattch: Power Estimation in Dynamic SimpleScalar

James Dinan, Eliot Moss

Architecture and Language Implementation Lab
Department of Computer Science

University of Massachusetts, Amherst, MA 01003
{jdinan, moss}@cs.umass.edu

July, 2004

DSSWattch is a powerful tool that allows users of the Dynamic SimpleScalar (DSS) toolset to obtain
cycle-accurate power estimates in a detailed out-of-order simulation environment. DSSWattch is an adap-
tation of Wattch, originaly for SimpleScalar on the Alpha and PISA architectures, to DSS for the PowerPC
architecture.

1 Introduction

Power and heat dissipation are rapidly becoming significant constraints in microarchitecture design and it
has become necessary for architects to explore the power implications of microarchitectural design deci-
sions. Many already existing tools can provide power estimates only after layout or floorplanning are com-
plete. In addition to providing information late in the design process, these tools are often quite slow [1].
The goals of DSSWattch and its predecessor, Wattch, are to provide a freely available, fast, and reasonably
accurate tool that can be used to explore power consumption early in the design process.

DSSWattch is an adaptation of Wattch to Dynamic SimpleScalar (DSS), a new version of SimpleScalar.
DSS adds dynamic features, allowing it to simulate programs such as the Jikes RVM Java virtual machine,
that perform such actions as dynamic compilation and memory mapping or that require dynamic linking [3].
In addition, DSSWattch extends the functionality of Wattch with better register file modeling, floating point
capabilities, and support for the 32-bit mixed data-width PowerPC architecture.

This document outlines major differences between Wattch and DSSWattch, gives instructions on how
to make use of DSSWattch, provides information about DSSWattch’s power model and how it can be cus-
tomized, and discusses some of DSSWattch’s present limitations. This document assumes the reader has a
basic understanding of the SimpleScalar simulation environment. For more information on SimpleScalar,
SimpleScalar for the PPC, and Dynamic SimpleScalar, please refer to [2], [5], and [3] respectively.

2 Differences Between DSSWattch and Wattch

The major changes between Wattch and DSSWattch fall into five categories: operand harvesting, handling
of floating point operands, population count enhancements, register file modeling, and differentiation of
integer, floating-point, and address data-widths.



2.1 Operand Harvesting

Wattch assumed that all instructions would take exactly two arguments and produce a single result. Addi-
tionally, memory instructions also had the option to update their base address register. Unfortunately, this
simplification is not well suited for the PowerPC Instruction Set Architecture (ISA) where some instructions
require more than two operands and many also read special purpose registers for input and update special
purpose registers as a side-effect. To offer better support for this ISA, we introduced a more flexible operand
harvesting method that stores all inputs and outputs as well as their register identifiers in the RUU station
associated with each in-flight instruction. The arrays that store the identifiers for the inputs and outputs
are named wattch ideps and wattch odeps respectively. The actual register values are stored in
the wattch inputs and wattch outputs arrays. We fill in these arrays in the dispatch stage when
functional simulation of the instruction is performed and its reservation station is entered in the RUU.

2.2 Register File Modeling

Wattch was originally designed to model a single integer register file of uniform word-length. This model
was not compatible with the 32-bit PPC’s ISA which calls for a 32-bit integer and a 64-bit floating-point
register file. In order to accommodate this new register file layout, we have extended DSSWattch to allow any
number of register files, which are described in the files wattch regfile.c and wattch regfile.h.
We store register files in the wattch regfiles array. During power calculations, we examine each
register file and calculate independent power estimates before adding them together to find the total register
file power usage.

2.3 Handling of Floating-Point Operands and Population Counting

Wattch is able to estimate dynamic bus power usage by performing population counts on data that is sent
over the busses in its the power model, generating a dynamic Activity Factor (AF). Population counting is
the process of counting the number of one-bits in a variable. Wattch was originally designed to work only
with integer operands and its dynamic AF was not able to distinguish between integer and floating-point
registers. We added this functionality to DSSWattch using the new operand harvesting data.

2.4 Differentiation of Data-Widths

The 32-bit PowerPC uses 32-bit addressing and performs 32-bit integer and 64-bit floating-point operations.
Wattch, however, was designed to work with a uniform 64-bit architecture. Thus, Wattch’s notion of a
uniform data widthwas divided into an address width, int data width, fp data width, and
a vestigial data width, which reflects the default data width of combined units such as the RUU.

3 DSSWattch Power Model

Figure 1 shows an overview of DSSWattch’s microarchitectural power model. For simplicity, we don’t
show edges between the Load Store Queue (LSQ) and the data cache and data TLB (Translation Lookaside
Buffer). We also omit edges between the instruction fetch unit and the instruction cache and instruction
TLB. The instruction fetch unit is not a part of the power model; we show it only for clarity.

2



Figure 1: DSSWattch Power Model: This figure shows all of the major parts of DSSWattch’s power model,
how they interact with one another, and their respective bit-widths. Instruction Fetch is not a part of this
power model, we show it only for clarity.

3



DSSWattch’s power model is, in large part, a consequence of the design of DSS’s out-of-order simulator.
In particular the rename logic, instruction window, and unified RUU, which holds all in-flight instructions,
reflect the microarchitecture simulated by the out-of-order simulator.

4 Using DSSWattch

4.1 Compiling DSSWattch

DSSWattch can be built independently of other simulators in the DSS suite by building the sim-wattch
target or by defining BUILD WATTCH at compile time. This produces a binary named sim-wattch, which
is effectively a copy of sim-outorder, the out-of-order simulator, with DSSWattch power modelling
enabled.

Because the extremely large switch statement in sim-outorder.c’s ruu dispatch function is made
even larger by DSSWattch, compilation has been known to fail on older versions of GCC with optimizations
enabled. This problem can be avoided either by disabling optimizations or by using a newer version of GCC.

Additionally, generation of dynamic activity factors can be disabled at compile time by defining STATIC AF
instead of DYNAMIC AF in the power.h file. Using a static activity factor greatly decreases simulation
time but also reduces the accuracy of power statistics that depend on activity factors.

4.2 Running DSSWattch

One runs sim-wattch in the same way as sim-outorder. Before simulation begins, sim-wattch
outputs information about its power model and after simulation has finished it displays the results of the
power simulation following DSS’s simulation statistics.

5 Making Changes to DSSWattch

DSSWattch is easy to extended and customize for special simulation situations. In addition to the files
required by sim-outorder, DSSWattch is made up of the following files:

sim-outorder.c DSS’s out-of-order simulator. Modifications were made to this simulator to generate access
counts and population counts for all of the elements in DSSWattch’s power model.

dsswattch.h This file contains code used to interface with sim-outorder.

dsswattch regfile.{hc} These files are part of DSSWattch’s new register file abstraction.

power.{hc} These files contain DSSWattch’s power model and contain all of the code used to calculate
power estimates from the information gathered in sim-outorder.

cacti/ The files in the cacti directory are used for power modeling of array structures. Cacti is an indepen-
dent project which was started by DEC and is presently under the direction of Hewlett-Packard. This
copy of cacti has been adapted for use in DSSWattch.

4



5.1 Adding Register Files

One adds register files to DSSWattch by changing the constant NUM REGFILES in dsswattch regfiles.h
and by updating the wattch init regfiles() function in dsswattch regfiles.c to initialize
the register file’s configurable parameters. Additionally, one must modify sim-outorder.c to maintain
per-cycle access and population counts for the new register file. Once these changes are in place, DSSWattch
will automatically include the new register file in its power model and calculate its per-cycle statistics.

5.2 Changing Bit-Widths

The register-file data widths are defined as int data width and fp data width in the dsswattch regfile.c
file. The addr width, data width, instr length, and opcode length constants are defined in
the power.c file and can also be updated to reflect new architectures.

6 Known Limitations

6.1 RUU (Register Update Unit)

The RUU of sim-outorder introduces several inaccuracies into the simulation of the PowerPC architecture.
Foremost is an inaccuracy in simulation timing. The 32-bit PowerPC utilizes separate reservation stations
for each functional unit and makes use of a commit buffer to store completed instructions and retire them
in program order [4]. Because the RUU is meant to simulate both the reservation stations and the commit
buffer, it is possible for instructions to get a slot in the RUU even when all of the reservation stations for
the functional unit required by this instruction would be occupied in a real PowerPC. Likewise, it is also
possible for instructions to be unable to issue, even though there would be free reservation stations in a real
PowerPC because the RUU is full of instructions waiting to commit.

In terms of the power model, the RUU is also a large source of error because it is unable to separate
the power used in the PowerPC’s commit buffer from the power used by the reservation stations. Power
is further skewed by the fact that all entries in such a unified RUU must contain 64-bit operands since any
slot can be occupied by a floating-point instruction with 64-bit operands. This means that even though a
real PowerPC uses 32-bit reservation stations for its integer units, they are simulated as 64-bit entries in the
RUU.

6.2 Special-Purpose Registers

Power consumed by special-purpose registers is not simulated by DSSWattch. The overall error from such a
decision is believed to be minimal and it is believed that the power consumed by the special purpose registers
is negligible compared to the total power consumed by the PowerPC.

See Section 5.1 for details on how to add register files to DSSWattch. Adding support for the special-
purpose registers is further complicated by the fact that the split-dependency feature of the PowerPC’s
Condition Register (CR) is not simulated in DSS. The PPC’s CR is accessible as 8 one-byte subregisters,
so one instruction can access the first CR (called CR0) without conflicting with another instruction which
accesses only the second second byte (CR1), etc.

5



6.3 Functional Units

The functional unit power model is estimated using static power consumption estimates. Accesses can either
be made to the integer unit or floating-point unit, each of which has its own constant power cost. Thus, all
floating-point operations consume the same amount of energy and likewise all integer operations consume
the same amount of energy. This simple model produces reasonable average power-consumption estimates
and would be relatively easy to enhance should it be necessary to get more detailed power numbers from the
functional units.

References

[1] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for Architectural-Level Power Analysis
and Optimizations. In Proc. of the 27th Int’l Symp. on Computer Architecture, June 2000.

[2] D. Burger and T. M. Austin. The SimpleScalar Tool Set, Version 2.0. University of Wisconsin-Madison
Computer Sciences Department Technical Report #1342, June 1997.

[3] X. Huang, J. E. B. Moss, K. S. McKinley, S. Blackburn, and D. Burger. Dynamic SimpleScalar: Simu-
lating Java Virtual Machines. Technical Report TR-03-03, University of Texas at Austin, Feb. 2003.

[4] Motorola. G2 PowerPC Core Reference Manual Rev. 1. Technical Report G2CORERM/D, June 2003.

[5] K. Sankaralingam, R. Nagarajan, S. W. Keckler, and D. Burger. SimpleScalar Simulation of the Pow-
erPC Instruction Set Architecture. Technical Report TR2000-04, Department of Computer Sciences,
The University of Texas at Austin, Austin, TX, Feb. 2001.

6


